Abstract

The improvement of the parametric stability margin of state space uncertain systems via a maximization formulation under the constraints of pole assignment is investigated. The class of systems considered is where the uncertainty may be modeled as the, possibly nonlinear, variation of a parameter appearing in the entries of the system and input matrices. The continuity and differentiability properties of the stability margin are discussed. A gradient-based approach is presented for the improvement of the stability margin and a compact formula to compute the gradient is provided. Numerical examples are used to demonstrate the effectiveness of the approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.