Abstract
Physical factors have been used to address disuse osteoporosis, but their effects and mechanism remain unclear. The purpose of this study was to determine the effects of pulsed electromagnetic field (PEMF) and whole-body vibration (WBV) on disuse osteoporosis to increase knowledge about treating osteoporosis. A disuse osteoporosis rat model was developed by hind-limb unloading (HU) for 6weeks. Forty 4-month-old female Sprague-Dawley rats were divided into 5 groups and given the following interventions: HU, HU treated with PEMF (HUP), HU treated with WBV (HUW), HU treated with both PEMF and WBV (HUPW), and no intervention (controls). After 8weeks of intervention, measurements were taken. HU induced a decrease in bone mineral density (BMD), whereas HUP, HUW, and HUPW increased it. Moreover, the bone resorption markers tartrate-resistant acid phosphatase (TRAP) and C-terminal peptide of type 1 collagen in the HU group significantly increased, whereas the osteogenesis markers osteocalcin and N-terminal propeptide of type 1 procollagen significantly decreased. The markers osteocalcin and N-terminal propeptide of type 1 procollagen significantly increased, but TRAP and C-terminal peptide of type 1 collagen significantly decreased in the HUPW, HUP, and HUW groups compared with the HU group. In particular, HUPW effectively increased osteocalcin and decreased TRAP compared with HUP and WBV. Microcomputed tomography analysis of the femur indicated that HUPW improved trabecular number, bone volume over total volume, bone surface over bone volume, trabecular separation, and the structure model index compared with HUP and that it improved bone surface over bone volume, trabecular separation, and structure model index compared with HUW. The HUPW group showed a significant increase in maximum load compared with the HUW group and a significant increase in elastic modulus compared with the HUP group. PEMF, WBV, and their combination all attenuated bone resorption and enhanced osteogenesis. WBV and the combination of treatments have great potential to improve osteogenesis compared with PEMF. In addition, HUPW significantly attenuated bone resorption compared with HUW and HUP. The results of this study indicated that HUPW could effectively improve disuse osteoporosis compared with HUP, given that trabecular number and bone volume over total volume are associated with disuse osteoporosis. Moreover, BMD recovered well with HUP, HUW, and HUPW but the bone structure-especially mechanical performance-did not, indicating that osteoporosis should be evaluated with BMD and mechanical performance, not with BMD in isolation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.