Abstract

Abstract Parameterization of gravity waves due to subgrid-scale orography is now included in most existing large-scale models of the atmosphere. Parameterization schemes, however, have so far been evaluated mainly in view of the overall performance of the large-scale models. This may lead to an inappropriate assessment of the schemes since errors from various sources may interact with one another. To avoid this situation, an approach is taken in which a numerical model that explicitly resolves gravity waves is used to evaluate the performance of the schemes. For this purpose, a mesoscale two-dimensional nonlinear anelastic nonhydrostatic model is developed and used to numerically simulate gravity waves for a variety of orographic conditions. Regarding a subdomain of the mesoseale model as the horizontal grid interval of a large-scale model, two vertical profiles of gravity wave drag are compared–one for the subdomain-averaged values of the drag simulated by the mesoseale model and the other for the drag c...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.