Abstract

Recent aircraft as well as rotorcraft design technologies include more and more composite materials. Their high mechanical characteristics and high mass specific energy absorption capability motivate their use in large primary structures as well as in sub-floor structural and crashworthy components in preference to metals. Due to the increased performance of computers and new explicit finite element (FE) software developments industry now considers using crash simulation technologies to study the crashworthiness of new aircraft design. In order to address the crash analysis of composite structures, which is much more difficult than the behaviour of ductile metallic structures, a German/French research co-operation was set up between ONERA and DLR. This paper summarises results from the first 3 years collaboration and some work performed within a European research project on composite fuselage structures. In the first part of the paper, ONERA presents its contribution to the characterisation of composite materials from 10 −5 s −1 up to 100 s −1 on hydraulic machines. Simulations have been undertaken to model the tests and evaluate the FE codes. In the second part DLR studies are presented on the application of a commercial explicit FE code to simulate the behaviour of generic energy absorbing composite sub-floor elements, representative for helicopters and general aviation aircraft, under low velocity crash conditions (up to 15 m/s). This includes some comparisons between predicted structural response and failure modes with observed test results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.