Abstract

The brain has high energy requirements to maintain neuronal activity. Consequently impaired mitochondrial function will lead to disease. Normal aging is associated with several alterations in neurosteroid production and secretion. Decreases in neurosteroid levels might contribute to brain aging and loss of important nervous functions, such as memory. Up to now, extensive studies only focused on estradiol as a promising neurosteroid compound that is able to ameliorate cellular bioenergetics, while the effects of other steroids on brain mitochondria are poorly understood or not investigated at all. Thus, we aimed to characterize the bioenergetic modulating profile of a panel of seven structurally diverse neurosteroids (progesterone, estradiol, estrone, testosterone, 3α-androstanediol, DHEA and allopregnanolone), known to be involved in brain function regulation. Of note, most of the steroids tested were able to improve bioenergetic activity in neuronal cells by increasing ATP levels, mitochondrial membrane potential and basal mitochondrial respiration. In parallel, they modulated redox homeostasis by increasing antioxidant activity, probably as a compensatory mechanism to a slight enhancement of ROS which might result from the rise in oxygen consumption. Thereby, neurosteroids appeared to act via their corresponding receptors and exhibited specific bioenergetic profiles. Taken together, our results indicate that the ability to boost mitochondria is not unique to estradiol, but seems to be a rather common mechanism of different steroids in the brain. Thus, neurosteroids may act upon neuronal bioenergetics in a delicate balance and an age-related steroid disturbance might be involved in mitochondrial dysfunction underlying neurodegenerative disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.