Abstract

Microalgae cultivation could contribute to the achievement of several sustainable development goals (SDGs). However, cultivating Chlorella vulgaris, like any other microalgae, is challenging due to various biotic, abiotic and process related factors that can affect its growth and biomass productivity. Nutrient availability, particularly N and P, and their ratio play a crucial role in building cellular structures and maintaining metabolic processes, determining basically the maximum achievable biomass productivity under given circumstances. The present article aims to improve the N and P ratio to enhance the biomass productivity of Chlorella vulgaris microalgae as well as to characterize the biomass growth kinetics that can be used for prediction purposes. The results showed that the nutrient solutions prepared with increased nitrate concentration (T1 – N:P = 55:1 and T3 – N:P = 28:1) promoted chlorophyll formation and significantly outperformed the control sample (BG-11 – N:P = 35:1) with 192% and 183%, leading to higher biomass productivity with 1160 μg L−1 and 1103 μg L−1, respectively. Moreover, a strong positive correlation was revealed (0.81) between phosphate concentration and microalgae activity rate, indicating the role of phosphorous in energy transfer, resulted in stimulated microalgae activity rates with 71.2% and 70.66% in the phosphate-increased nutrient solutions (T2 – N:P = 14:1 and T3 – N:P = 28:1). In addition, an exponential equation was introduced to characterize the biomass growth kinetics, of which the theoretically achievable maximum chlorophyll concentration (CTAM) and the theoretical cultivation time (tcultivation) were determined for the tested nutrient solutions with variable N:P ratio. It was concluded, that the higher the N:P ratio, the higher the CTAM is, nevertheless the absolute concentration of these nutrients need to be considered as well. The introduced two key parameters could provide valuable information for decision makers regarding the optimization of growth conditions, nutrient supplementation, and harvesting, additionally decreasing the production costs and making the cultivation cycles more effective and sustainable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.