Abstract

In this study, we have improved electrical characteristics such as the efficiency (η) and the fill factor (FF) of finished multicrystalline silicon (mc-Si) solar cells by using a new chemical treatment with a hot phosphoric (H3PO4) acidic solution. These mc-Si solar cells were made by a standard industrial process with screen-printed contacts and a silicon nitride (SiN) antireflection coating. We have deposited SiN thin layer (80 nm) on p-type mc-Si substrate by the mean of plasma enhanced chemical vapour deposition (PECVD) technique. The reactive gases used as precursors inside PECVD chamber are a mixture of silane (SiH4) and ammonia (NH3) at a temperature of 380°C. The developed H3PO4 chemical surface treatment has improved η from 5·4 to 7·7% and FF from 50·4 to 70·8%, this means a relative increase of up to 40% from the initial values of η and FF. In order to explain these improvements, physical (AFM, EDX), chemical (FTIR) and optical (spectrophotometer) analyses were done.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call