Abstract

In this study polyvinylidene fluoride (PVDF) is investigated as an alternative to polytetrafluoroethylene (PTFE) for air-cathode diffusion layers (DLs) in microbial fuel cells (MFCs) for the improvement of MFC power generation. It is found that the cathode fabricated with PVDF achieves a higher maximum power density (MPD) than a PTFE cathode. Successive PVDF or PVDF/carbon black DLs are applied on the base layers in order to optimize cathode performance. The results show significant improvements in such performances as the coulombic efficiency (CE), MPD, and water loss. In electrochemical tests, the cathode coated with four PVDF DLs has the largest current response at a given applied potential, yielding the highest MPD of 0.123 mW cm−2 (normalized to the projected cathode surface area) and largest CE (10.7%) in the MFC test. Carbon black is added to the DLs in order to test its effect on the MFC power generation. Cathodes made from pure PVDF DLs perform better than those containing PVDF/carbon black DLs in electrochemical and MFC tests. In addition, a smaller MFC (28 mL) produces a much higher MPD than a larger MFC (700 mL), resulting in an increase in the CE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call