Abstract
Abstract This study presents a numerical investigation of the dynamics of methane adsorption in granular activated carbon beds with bidisperse packing in order to reduce the void spaces between the adsorbent particles and to improve the storage capacity in adsorbed natural gas vessels. Two distinct particle sizes (d and D) were used for the packing of the bidisperse bed, and the following particle size ratios were investigated: δ = d/D = 1 (monodisperse bed), 1/5, 1/10, 1/15, and 1/20. Compared with the monodisperse bed condition, the results obtained showed that bidisperse packing increases bed density by about 30% and methane storage capacity by up to 20%. The results also showed that the charging time could be optimized by increasing the pressure drop applied to the bed and that the storage capacity can be increased by cooling the admitted gas in the vessel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.