Abstract

The effect of postdeposition annealing (PDA) of the Al2O3 blocking layer in a charge-trap type memory device is investigated. Significant improvements are achieved by high temperature PDA at 1100 °C, achieving faster operation speed, good charge retention, and a wide program/erase window. Experimental evidence shows that the underlying mechanism is not the changes in the band gap of the crystallized Al2O3 but is due to the higher trap density in the Si3N4 trapping layer at a deeper energy level by the intermixing between Al2O3 and Si3N4. The reduced trapping efficiency of the annealed Al2O3 also helps improve the retention property.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.