Abstract

Megavoltage computed tomography (MVCT) offers an opportunity for adaptive helical tomotherapy. However, high noise and reduced contrast in the MVCT images due to a decrease in the imaging dose to patients limits its usability. Therefore, we propose an algorithm to improve the image quality of MVCT. The proposed algorithm generates kilovoltage CT (kVCT)-like images from MVCT images using a cycle-consistency generative adversarial network (cycleGAN)-based image synthesis model. Data augmentation using an affine transformation was applied to the training data to overcome the lack of data diversity in the network training. The mean absolute error (MAE), root-mean-square error (RMSE), peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM) were used to quantify the correction accuracy of the images generated by the proposed algorithm. The proposed method was validated by comparing the images generated with those obtained from conventional and deep learning-based image processing method through non-augmented datasets. The average MAE, RMSE, PSNR, and SSIM values were 18.91 HU, 69.35 HU, 32.73dB, and 95.48 using the proposed method, respectively, whereas cycleGAN with non-augmented data showed inferior results (19.88 HU, 70.55 HU, 32.62dB, 95.19, respectively). The voxel values of the image obtained by the proposed method also indicated similar distributions to those of the kVCT image. The dose-volume histogram of the proposed method was also similar to that of electron density corrected MVCT. The proposed algorithm generates synthetic kVCT images from MVCT images using cycleGAN with small patient datasets. The image quality achieved by the proposed method was correspondingly improved to the level of a kVCT image while maintaining the anatomical structure of an MVCT image. The evaluation of dosimetric effectiveness of the proposed method indicates the applicability of accurate treatment planning in adaptive radiation therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.