Abstract

High strength can be achieved by severe plastic deformation but at the cost of ductility. A novel strategy, which named multiple surface rolling was applied on a homogeneous annealed pure copper to break the strength and ductility trade-off. A combination of high strength and acceptable ductility was achieved in copper strips after submitted to multiple surface rolling. The detail microstructure evolution rolled samples were characterized by EBSD observation and compared with the initially annealed ones. The average grain size does not show significant deviation in both initially annealed and multiple surfaces rolled copper. Detailed observations show a heterogeneous distribution of low angle grain boundaries through thickness direction. The low angle grain boundaries and misorientations revealed the potential strengthening mechanisms in the material. Both microstructural characterization and numerical simulations indicate that multiple surface rolling contributes to strain hardening at the sample surface, while the interior layer was undergoing elastic deformation or partial plastic deformation. This heterogeneous deformation renders copper sheet with a combination of high strength and ductility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.