Abstract

The work is devoted to improvement of mechanical properties of iron castings via adjusting of the cooling rate without introduction of alloying additives. The new technological solution is suggested; it can be easily adapted to a casting technology. This solution is based on variation of the cooling rate of iron castings within structurally sensitive solidification intervals. For this purpose, the casting mould was initially cooled after pouring, then heated and cooled again. Cooling of the mould during the period of primary austenite crystal forming led to increase of dendrite crystallization rate and was executed using compressed air. Retarding of the cooling rate during the period of eutectic transformation was provided by the mould heating via burning of exothermic carbon-containing additives introduced in a facing layer of sand-clay moulding mix. Burning reaction is accompanied by heat extraction, what steeply retarded the cooling rate within the interval of eutectic transformation. Consequent acceleration of castings cooling within the interval of eutectoid transformation was achieved via repeated air blowing through a worked reaction layer. Adjusted cooling of iron castings allowed to provide the most favourable solidification conditions, taking into account strictly individual requirements for each structurally sensitive temperature intervals. It led to increase of a volumetric part of primary austenite dendrite crystals, to decrease of eutectic transformation overcooling degree, to forming of graphite eutectics and enlargement of dispersity of pearlite component in iron. Consequently, lowering of widespread iron castings rejects takes place, among them chilling, with simultaneous improvement of metal mechanical properties. As a result, the primary and real structures were varied, what had a positive effect on mechanical properties of casting metal. It is shown that use of solidification rate adjustment led to essential increase of metal tensile strength for the experimental casting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.