Abstract

Abstract Polylactic acid (PLA) is one of the important materials for orthopedic regenerative engineering applications due to its biodegradability and biocompatibility. Nonetheless, PLA may show insufficient mechanical strength for some bone replacement applications. Halloysite nanotube (HNT) is one of the non-toxic, biocompatible reinforcement for improving mechanical and biological properties of PLA for tissue engineering applications. In this study, PLA/HNT scaffolds were prepared by chemical foam injection molding process. Laser surface texturing was applied on the skin layer of the injection molded scaffolds to enhance the cell viability and hydrophilicity of PLA. The effects of HNT concentration on cell morphology, mechanical and thermal properties, cell viability and biodegradation profile of the scaffolds were studied. The results demonstrated that cell viability increased by 43% in PLA/HNT scaffolds compared to neat PLA. Hydrophilicity of the scaffolds that have thick skin layer was enhanced by the laser surface texturing in two different designs and consequently, cell viability increased about 16%. Surface roughness measurements and water contact angle measurements have verified this result.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call