Abstract

A unique approach was developed to improve the precision of quantification of tributyltin (TBT) in sedimentsby solid phase microextraction (SPME) using isotope dilution GC/MS. The precision of the analytical technique was initially evaluated using standard calibration solutions. In selective ion monitoring (SIM) mode, the relative standard deviation (RSD) obtained for TBT based on peak area response was 18% (n = 11). When an internal standard, tripropyltin (TPrT), was used, the RSD decreased to 12%. A significant improvement in the precision using SPME was noted when a 117Sn-enriched TBT spike was employed; the RSD decreased 4-fold to 3%. Detection limits of 0.2 and 20 ng(Sn) L(-1) were achieved with SPME sampling and liquid-liquid extraction, respectively. Six analyses were performed for determination of TBT in PACS-2 sediment Certified Reference Material using both standard additions and isotope dilution procedures. For the latter, a 117Sn-enriched TBT spike was used. A concentration of 0.88 +/- 0.03 microg g(-1) (RSD 3.4%) obtained using standard additions was in good agreement with the certified value of 0.98 +/- 0.13 microg g(-1) as tin. Concentrations found using isotope dilution were 0.895 +/- 0.015 microg g(-1) (RSD 1.73%) as tin and 0.874 +/- 0.014 microg g(-1) (RSD 1.66%) as tin using a liquid-liquid extraction and SPME sampling, respectively. A 2-fold improvement in the precision of TBT concentration measurement using isotope dilution was clearly achieved, demonstrating its superiority in providing more accurate and precise results as compared to the method of standard additions. The isotope dilution technique eliminated the problem of poor reproducibility, which typically plagues SPME.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.