Abstract

Due to the influence of complex factors such as atmospheric dynamic processes, physical processes and local topography and geomorphology, the prediction of near-surface meteorological elements in the numerical weather model often has deviation. The deep learning neural networks are more flexible but with high variance. Here, we proposed a stacking ensemble model named FLT, which consists of a fully connected neural network with embedded layers (ED-FCNN), a long short-term memory (LSTM) network and a temporal convolutional network (TCN) to overcome the high variance of a single neural network and to improve prediction of maximum air temperature. The case study of daily maximum temperature forecast evaluated with observation of almost 2400 weather stations shows substantial improvement over that of single neural network model, ECMWF-IFS and statistical post-processing model. The FLT model can more effectively improve the forecast bias of the ECMWF-IFS model than that of any of the above single neural network model, with the RMSE reduced by 52.36% and the accuracy of temperature forecast increased by 43.12% compared with the ECMWF-IFS model. The average RMSEs of the FLT model decreases by 8.39%, 1.50%, 2.96% and 16.03%, respectively, compared with ED-FCNN, LSTM, TCN and the decaying average method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call