Abstract

Suppression of 1/f noise in tunnel magnetoresistance (TMR) sensors is a central issue in the realization of magnetic field sensors with ultrafine magnetic field detectivity. Although AC modulation with an external magnetic field has been proposed as a method to shift the operating frequency of a sensor to a high frequency and substantially suppress 1/f noise, its effects on the two types of 1/f noise, that is, magnetic and electrical 1/f noise, are not well understood. In this study, we investigated the noise characteristics and signal detection performance of TMR sensors with an even-function resistance-magnetic field curve operated by the AC modulation method. For one TMR device in which the magnetic 1/f noise was dominant, AC modulation degraded the magnetic field detectivity owing to the additional noise induced by the AC modulation field. However, in another TMR device, in which the electrical 1/f noise was artificially enhanced by introducing lattice defects in the MgO tunnel barrier, AC modulation effectively suppressed the 1/f noise and improved the magnetic field detectivity by one order. This demonstrates that the AC modulation method using an external magnetic field is effective for magnetic field sensors in which electrical 1/f noise is dominant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call