Abstract

To reduce the issue of tri-primary color reabsorption, a new approach for single-phase phosphors as light-emitting diodes (LEDs) has been recommended. The structures, morphology, photoluminescence, thermal stability, and luminescence mechanism of a variety of Ca3Bi (PO4)3 (CBPO): Ce3+/Dy3+ phosphors were investigated. XRD characterization showed that all CBPO samples were eulytite structures. Furthermore, the energy transfer process from Ce3+ to Dy3+ in CBPO is systematically investigated in this work, and the color of light can be adjusted by changing the ratio of doped ions. Under UV light, energy is transferred from Ce3+-Dy3+ mainly through quadrupole-quadrupole interactions in the CBPO host, and doping with different Dy3+ concentrations tunes the emission color from blue to white. The thermal stability of the CBPO: 0.04Ce3+, 0.08Dy3+ samples is outstanding, and the CIE coordinates of the samples after emission have little effect with temperature, while their emission intensity at 423 K is as strong as that at room temperature, reaching 90%. The above results indicate that this CBPO material has great potential as a white light phosphor under near-UV excitation at the optimized concentration of Ce3+ and Dy3+.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.