Abstract
The equiatomic MoNbTaTiZr biocompatible and refractory high-entropy alloy (RHEA) was additively manufactured by laser powder bed fusion (LPBF). The possibility to reduce the cracking susceptibility of the RHEA during LPBF was investigated. By the addition of pure B to the RHEA powder feedstock, the in-situ precipitation of boride particles was promoted. These precipitates limited the grain growth, thus avoiding the formation of cracks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.