Abstract

Varietal differences among ten rice cultivars showed that stem diameter is a key factor in lodging resistance (measured in terms of pushing resistance). Two near-isogenic lines (NILs) were selected from a series of chromosome segment substitution lines developed between cultivars Nipponbar and Kasalath, one containing a single stem diameter QTL (sdm8; NIL114), and another with four stem diameter QTLs (sdm1, sdm7, sdm8, sdm12; NIL28). Compared with the Nipponbare control, stem diameters were larger in NIL114 and NIL28 by about 7 and 39%, respectively. Pushing resistance in NIL28 was significantly greater than in Nipponbare, but NIL114 was similar to Nipponbare. The two NILs had greater weight of lower stem and culm wall thickness than Nipponbare. NIL28 had higher plant height, which is a negative effect on lodging resistance, than Nipponbare. The non-structural carbohydrate contents of NIL stems were higher than that of Nipponbare, whereas the silicon contents were lower in the NILs, and cellulose contents were lower only in NIL28. The basal internodes of the two NILs were significantly stiffer than those of Nipponbare. These results suggest that increasing stem diameter in rice breeding programs would improve lodging resistance, although the combination of multiple QTLs would be necessary to produce thicker stems with higher pushing resistance, whereas the higher plant height could also result from the combination of multiple QTLs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.