Abstract

The economic efficiency of coal mining at the reduced cost is directly related with maintenance of operation conditions in temporary roadways. This article proposes a method of increasing the loadbearing capacity of the three-link arched support made of a special rolled profile (SRP) by increasing the stiffness moments of arched support sections subjected to the greatest bending moments. It is determined to be necessary to install the same size SPR in the support sections exposed to the greatest bending moments. Mathematical modeling of the reinforcement shows that the sufficient length of SRP segments is 30 cm. The calculations show that SRP 27 is replaceable by SRP 17 with the same size inserts, which allows saving of 10 kg of steel per each meter of the arched support. The proposed method of increasing the load-bearing capacity of the support will reduce the specific content of steel in the mine support manufacture and, thereby, will enable significant saving of material and labor resources. The studies conducted to substantiate the proposed solution include: determination of bending moments and normal forces in the three-link steel arched support by the computer-aided procedure of VNIMI (All Union Research Institute of Mining Geomechanics and Mine Surveying) for the specific existing conditions, with the subsequent choice of the required size of the support; stress–strain analysis of rock mass and mine support in ANSYS environment; economic calculation of the proposed solution effectiveness. The implemented researches give grounds to believe that the proposed variant of increasing the loadbearing capacity of the support made of the rolled steel profile can significantly improve stability of mine roadways. It is possible to strengthen the support without reducing the metal content in cases of expected deformation of the support under the influence of the confining pressure, when the other methods of maintenance-free support in roadways are ineffective or require a lot of time, materials and labor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call