Abstract

In this paper, a new design concept of a lightweight floating ceiling with a special arrangement of stiffener beams and isolators is proposed to enhance vibration isolation performance. The key design parameters of resonant frequency of bending and mode shape factor on vibration transmission are determined with some simple formulae. Structural vibrations and noise radiation are evaluated with finite element models (FEM) for various designs. The optimum ceiling designs are applied in a studio, and field measurements with reliable frequency range of 30–400 Hz are conducted to confirm the theoretical results. The analyses ascertain that four design features ensure the optimum vibration isolation performance: the stiffener beams must be installed at the nodal line of fundamental bending resonance of the plate; smaller panels should be applied instead of a large panel covering the whole area of the ceiling, and joints should be free; the isolators should be placed at the nodal point of the bending mode of the plate; and the fundamental bending resonance frequency must not match the modal critical frequency. The proposed stiffened wooden panel design achieved a noise and vibration reduction of 20 dB in the frequency range of 40–100 Hz, and was better than the performance of a concrete floating floor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.