Abstract
The effect of various materials of the spherical scattering centre in a TiO2 nanoporous structure in dye-sensitized solar cells (DSSCs) was investigated by both theoretical simulation and experiment. Three materials, titania, electrolyte and silica, were investigated using the Mie Theory, in which the concepts of volume total cross section and solar spectrum were accommodated for better accuracy. Of those materials, silica was chosen in this study due to its perfectly transparent nature, easy size controllability and perfectly spherical shape, which make silica most suitable for understanding the scattering effect with a simple optical approach. The validity was proved by experiment with various sizes of silica beads (0.3, 0.6, 0.9, 1.2, 1.5 µm) embedded in DSSCs; experiments revealed the same trend as did the simulation. The overall efficiency of the DSSCs was increased by 20.4% using 300 nm diameter silica beads. The efficiency versus bead size had a peak with beads of 300 nm diameter and decreased as the bead size increased. This study showed that silica could be a good candidate for scattering particles in DSSCs. Furthermore, this study could be considered a valuable reference for further investigations of scattering phenomena by small spherical particles or arbitrary shape of particles in DSSCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.