Abstract

This paper studies the analysis of Na element concentration in NaCl aqueous solution using laser-induced breakdown spectroscopy (LIBS). The NaCl solution is transformed to a thin water film. The water film can provide a stable liquid surface, and overcome the disadvantage that laser focusing position cannot be fixed due to liquid level fluctuation (when nanosecond laser is used as the excitation light source, there is serious liquid splash phenomenon, which affects the signal stability). And, femtosecond pulse laser is used to excite the water film to produce the plasma, avoiding liquid splashing. The measured emission lines are Na (I) at 589.0 nm and 589.6 nm. The calibration curves of sodium are plotted by measuring different concentrations of NaCl solution. The linear correlation coefficients of Na (I) lines at 589.0 nm and 589.6 nm are 0.9928 and 0.9914, respectively. In addition, the relative standard deviation is also calculated; its range is from 1.5% to 4.5%. The results indicate that the combination of femtosecond laser and water film can significantly improve the signal stability for liquid analysis in LIBS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call