Abstract

Our previous research revealed that Cordyceps militaris can improve the learning and memory, and although the main active ingredient should be its polypeptide complexes, the underlying mechanism of its activity remains poorly understood. In this study, we explored the mechanisms by which Cordyceps militaris improves learning and memory in a mouse model. Mice were given scopolamine hydrobromide intraperitoneally to establish a mouse model of learning and memory impairment. The effects of Cordyceps polypeptide in this model were tested using the Morris water maze test; serum superoxide dismutase activity; serum malondialdehyde levels; activities of acetyl cholinesterase, Na+-k+-ATPase, and nitric oxide synthase; and gamma aminobutyric acid and glutamate contents in brain tissue. Moreover, differentially expressed genes and the related cellular signaling pathways were screened using an mRNA expression profile chip. The results showed that the genes Pik3r5, Il-1β, and Slc18a2 were involved in the effects of Cordyceps polypeptide on the nervous system of these mice. Our findings suggest that Cordyceps polypeptide may improve learning and memory in the scopolamine-induced mouse model of learning and memory impairment by scavenging oxygen free radicals, preventing oxidative damage, and protecting the nervous system.

Highlights

  • Learning and memory are among the main functions of the human brain, and together they play an important role in biological evolution and development [1]

  • We examined the effects of Cordyceps polypeptide on the learning and memory abilities of the mice by observing mouse behavior serum superoxide dismutase (SOD) activity; serum malondialdehyde (MDA) content; the acetyl cholinesterase AChE, Na+k+-ATPase, and endothelial nitric oxide synthase activities; and the gamma aminobutyric acid (GABA) and glutamate (Glu) contents in mouse brain tissues

  • The differences in the mRNA chip results were significant between the Cordyceps polypeptide-treated group and the model group, and the results showed that Cordyceps polypeptide could significantly inhibit the expression level of genes related to the nervous system

Read more

Summary

Introduction

Learning and memory are among the main functions of the human brain, and together they play an important role in biological evolution and development [1]. The drugs commonly used clinically for prevention and improvement of learning and memory impairment include free radical scavengers, drugs to prevent beta amyloidal deposits formation, M receptor agonists, and acetyl cholinesterase inhibitors. Evidence-Based Complementary and Alternative Medicine and memory impairment via intraperitoneal injection of scopolamine hydrobromide Using this model, we examined the effects of Cordyceps polypeptide on the learning and memory abilities of the mice by observing mouse behavior serum superoxide dismutase (SOD) activity; serum malondialdehyde (MDA) content; the acetyl cholinesterase AChE, Na+k+-ATPase, and endothelial nitric oxide synthase (eNOS) activities; and the gamma aminobutyric acid (GABA) and glutamate (Glu) contents in mouse brain tissues. The ability of Cordyceps polypeptide to prevent and improve learning and memory impairment in the model mice was confirmed, and the data obtained for the related mechanisms may provide an important theoretical basis for the further research and development of Cordyceps polypeptide

Experimental Materials
Animal Experiments
Gene Chip Analysis
Experimental Results
Discussions
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call