Abstract

Inorganic-organic composites based on the foil and standard RALEX® cation-exchange heterogeneous membranes (Mega a.s., Czech Republic) were prepared by in situ modification with sulfated zirconia (S-ZrO2). The composite membranes were characterized by SEM, TGA, X-ray diffraction, and FTIR spectroscopy. The effect of S-ZrO2 doping on membrane transport properties was studied using measurements of water uptake, ion-exchange capacity, conductivity, cation diffusion, hydrogen permeability, current-voltage characteristics, and membrane specific permselectivity (Ca2+/Na+). The S-ZrO2 incorporation leads to an increase in conductivity and permselectivity of the composite membranes. The proton conductivity of the S-ZrO2-doped foil membrane (0.0316 S/cm at 30°С) is 4 times higher than that of the pristine membrane. The Ca2+/Na+ permselectivity of the standard RALEX® CM membrane doped by S-ZrO2 reaches 3.8 at low current densities. Moreover, the composite membranes retain their selectivity during the long-term tests (> 50 h continuous electrodialysis). The sulfated zirconia doping of heterogeneous membranes demonstrated an excellent separation efficiency that can be used in wastewater treatment, desalination, and related electromembrane separation processes as well as to reduce scaling of electrodialysis modules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.