Abstract

Compressive strengths and elastic moduli of Carbon Fiber Reinforced Polymer (CFRP) composites can be noticeably improved by multiple ultra-thin interlays with non-woven Aramid Pulp (AP) micro/nano-fibers. 10-ply CFRP specimens with 0, 2, 4, 6, 8 g/m2 AP were tested under uniaxial compression. Those flexible AP fibers, filling the resin-rich regions and further constructing the fiber bridging at the ply interfaces, can effectively suppress delamination growth and lead to very good improvements both in the compressive strength and the elastic modulus. The CFRP specimen with an optimum interlay thickness has a distinct shear failure mode instead of the typical delamination cracking along the direction of continuous carbon fibers. Compressive Strengths After Impacts (CAI) of 12.35 J were also measured, up to 90% improvement in CAI has been observed. It is concluded those ultra-thin interlays of non-woven AP micro/nano-fibers are beneficial to design and manufacture “high strength” CFRP composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.