Abstract

Fe–50Co matrix composites containing 1.5 and 3 vol% of electroless Ni–P plated carbon nanotubes (CNTs) were densified using spark plasma sintering. The powder mixtures for the composites were prepared by two different routes: (a) ultrasonication only; and (b) ultrasonication followed by dry ball milling. Drying of the Ni–P plated CNTs under atmospheric conditions in the presence of ethanol promoted the nucleation and growth of graphene oxide on the coating. The ball milling route was found to be the most efficient method to disperse the coated nanotubes uniformly in the matrix. The addition of coated CNTs, which formed Taenite phase with the matrix alloy, made the composites to exhibit: (a) higher ductility, higher flexural strength, lower coercivity (Hc) and lower saturation induction (Bsat) compared to the monolithic material; and (b) higher ductility, higher flexural strength, higher Hc and lower Bsat in relation to the material with similar amount of bare CNTs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call