Abstract

N-vinylformamide-grafted polypropylene (VFPP) was successfully synthesized through a free radical grafting reaction. Both polymeric methylene diphenyl diisocyanate (PMDI) and VFPP were effective compatibilizers for increasing both the strength and stiffness of the resulting wood–PP (polypropylene) composites. Both the modulus of rupture (MOR) and the modulus of elasticity (MOE) of the resulting wood–PP composites were further increased when PMDI and VFPP were used together as an integrated compatibilizer system. This new PMDI-VFPP compatibilizer system was comparable to maleic-anhydride-grafted polypropylene in terms of enhancing the strength and stiffness of the wood–PP composites. Study of the fractured surfaces of the wood–PP composites with scanning electron microscopy revealed that this new PMDI-VFPP compatibilizer system greatly improved the interfacial adhesion between wood and PP. This PMDI-VFPP compatibilizer system also greatly reduced the water absorption of the resulting wood–PP composites. In this PMDI-VFPP compatibilizer system, PMDI is proposed to function as a wood-binding domain and VFPP to function as a PP-binding domain. PMDI reacted with the amide group in VFPP, thus forming covalent linkages between PMDI and VFPP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call