Abstract

Polycystic ovary syndrome (PCOS) is a common gynecological endocrine disease with a certain degree of chronic inflammation and abnormal ovarian angiogenesis in reproductive women. Mesenchymal stem cells (MSCs) have potent immunomodulatory properties to regulate ovarian function, while thrombospondin 1 (TSP1) improves the abnormal formation of ovarian vessels. The present study investigated the efficacy of the combined use of adipose-derived mesenchymal stem cells (ADSCs) and TSP1 in PCOS mice. The PCOS model is established using dehydroepiandrosterone (DHEA) by subcutaneous injection. Ovarian apoptosis is assessed using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Real-time quantitative PCR (RT-PCR) and western blotting are used to detect the expression of inflammatory factors and the levels of angiogenesis-related factors in ovarian tissues. Inflammatory cells count and ovarian angiogenesis are evaluated by immunofluorescence staining. This research shows that TSP1 and ADSCs treatment can significantly reduce the inflammatory state of PCOS mice, relieve the degree of ovarian cell apoptosis, optimize the ovarian histological manifestations, and restore the levels of related hormones. The proportion of CD31-positive cells in PCOS mice returned to near-normal levels. The synergistic use of ADSCs and TSP1 therapy can exert a more impressive effect by inhibiting the ovarian inflammatory response and regulating the balance of angiogenesis than the single application in PCOS mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call