Abstract

PurposeTo ensure the safety of aircraft fuel tanks, the FAA issued an airworthiness clause (25.981(b)) suggesting that the risk of combustion and explosion be reduced by installing a Flammability Reduction Means or an Ignition Mitigation Means. The airflow distribution method has a significant effect on the inerting performance. Therefore, this study aims to determine an optimum airflow distribution method of the inerting system.Design/methodology/approachThis paper establishes the calculation model of the oxygen concentration in the ullage of a multi-bay fuel tank, calculates the oxygen concentration in the ullage of an aircraft tank in single-flow and dual-flow modes under series and parallel ventilation methods and analyses the inerting performance of the tank under different airflow distribution methods.FindingsThe results show that: (1) the bleed flow rate required to achieve whole process inerting of multi-bay fuel tank in dual-flow mode is lower than that in single-flow mode; (2) under the parallel ventilation method, the decrease of oxygen concentration and the uniformity of each bay are better than that in the series ventilation method; (3) dual-flow mode staged ventilation method can be used to achieve the whole process inerting of the tanks under the minimum engine bleed consumption.Originality/valueThe novelty of this paper is to analyze and optimize the airflow distribution method of the inerting system under the whole flight envelope to minimize the engine bleed consumption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.