Abstract
Niemann-Pick Type C1 (NPC1) disease is an autosomal recessive neurodegenerative disease characterized by an excessive accumulation of unesterified cholesterol in late endosomes/lysosomes. Patients with NPC1 disease show a series of symptoms in neuropathology, including a gradually increased loss of motor control and seizures. However, mechanism of the neurological manifestations in NPC1 disease is not fully understood yet. In this study, we utilized the micro-electrode array (MEA) to analyze the spontaneous extracellular electrical activity in cultivated cortical neurons of the NPC1 mutant (NPC1−/−) mouse. Our results show a decrease of the spontaneous electrical activity in NPC1−/− neuronal network when compared to wild type neurons, as indicated by the decreased spike rate, burst rate, event rate, and the increased burst period and event period. Application of 3,5-dihydroxyphenylglycine (DHPG), a specific agonist of group I metabotropic glutamate receptors, improved the electrical activity of the NPC1−/− neuronal network, suggesting that DHPG can be used as a potential therapeutic strategy for recovery of the electrical activity in NPC1 disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.