Abstract

Probability density function (PDF) estimation is a fundamentally important problem for statistical pattern recognition. Independent component analysis (ICA) can be applied to the feature vectors so that the PDF estimation of a high dimensional vector can be converted to the PDF estimation of several 1-dimensional variables. However in practice we find that this PDF is in poor generalization ability for pattern classification because of the implied noise. Hence, this paper proposes an improvement of ICA based PDF estimation method. A latent variable model is built to separate the noise from the feature vector so that the pattern information and the noise can be dealt with respectively. Based on the latent variable model, a modified ICA based PDF is deduced. The validity of our proposed method is demonstrated by the experiments of off-line handwritten numeral recognition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.