Abstract

In this study, we report an appreciably increased efficiency from 6% up to 9.1% of hydrogenated amorphous silicon germanium (a-SiGe:H) thin film solar cells by using a combination of different p-doped window layers, such as boron doped hydrogenated amorphous silicon (p-a-Si:H), amorphous silicon oxide (p-a-SiOx:H), microcrystalline silicon (p-µc-Si:H), and microcrystalline silicon oxide (p-µc-SiOx:H). Optoelectronic properties and the role of these p-layers in the enhancement of a-SiGe:H cell efficiency were also examined and discussed. An improvement of 1.62mA/cm2 in the short-circuit current density (Jsc) is attributed to the higher band gap of p-type silicon oxide layers. In addition, an increase in open-circuit voltage (Voc) by 150mV and fill factor (FF) by 6.93% is ascribed to significantly improved front TCO/p-layer interface contact.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call