Abstract
This paper presents an improved prediction model for the higher heating value (HHV) of biomass based on the ultimate analysis by using the standard least squares method. This study intends for us to predict the HHV of biomass within a wide range of elemental distributions rather than the range of literature in order to create an optimal prediction model. To this end, many experimental data, comprising a wide range of biomass elements, regression models, and neural networks, are used for its comparative validation. As a result, the proposed prediction model, HHV = 2.8799 + 0.2965 * C + 0.4826 * H – 0.0187 * O demonstrates a better HHV prediction performance for biomass in a comparative validation of 250 samples presented in the literature, and the fitness model using a neural network shows a high fitness in the training, validation, and testing for 430 samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.