Abstract

The growth interface instability of large-size SiC growth in top-seeded solution growth (TSSG) is a bottleneck for industrial production. The authors have previously simulated the growth of 4-inch SiC crystals and found that the interface instability in TSSG was greatly affected by the flow field. According to our simulation of the flow field, we proposed a new stepped structure that greatly improved the interface stability of large-size crystal growth. This stepped structure provides a good reference for the growth of large-sized SiC crystals by TSSG in the future.

Highlights

  • With the rapid development of electric vehicles and smart grids, power devices using silicon carbide as a raw material have received increasing attention [1,2]

  • There are multiple complicated internal forces in the silicon solution, including electromagnetic forces caused by electromagnetic heating, thermal buoyancy caused by temperature differences, forced convection caused by rotation, and Marangoni forces caused by temperature differences at the gas-liquid interface

  • Many numerical simulation studies have been performed for the top-seed solution growth (TSSG) process of silicon carbide, and numerical simulation is a superior method for inspecting crystal growth [7,8,9,10]

Read more

Summary

Introduction

With the rapid development of electric vehicles and smart grids, power devices using silicon carbide as a raw material have received increasing attention [1,2]. There are multiple complicated internal forces in the silicon solution, including electromagnetic forces caused by electromagnetic heating, thermal buoyancy caused by temperature differences, forced convection caused by rotation, and Marangoni forces caused by temperature differences at the gas-liquid interface. For this reason, many numerical simulation studies have been performed for the TSSG process of silicon carbide, and numerical simulation is a superior method for inspecting crystal growth [7,8,9,10]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call