Abstract

In remote sensing of the ocean color, in particular, in coarse-resolution global model simulations, atmospheric trace gases including water vapor are generally treated as auxiliary data, which create uncertainties in atmospheric correction. The second Korean geostationary satellite mission, Geo-Kompsat 2 (GK-2), is unique in combining visible and infrared observations from the second geostationary ocean color imager (GOCI-II) and the advanced meteorological imager (AMI) over Asia and the Pacific Ocean. In this study, we demonstrate that AMI total precipitable water (TPW) data to allow realistic water vapor absorption correction of GOCI-II color retrievals for the ocean. We assessed the uncertainties of two candidate TPW products for GOCI-II atmospheric correction using atmospheric sounding data, and then analyzed the sensitivity of four ocean-color products (remote sensing reflectance [Rrs], chlorophyll-a concentration [CHL], colored dissolved organic matter [CDOM], and total suspended sediment [TSS]) for GOCI-II water vapor transmittance correction using AMI and global model data. Differences between the TPW sources increased the mean absolute percentage error (MAPE) of Rrs from 2.97% to 6.43% in the blue to green bands, higher than the global climate observing system requirements (<5%) at 412 nm. By contrast, MAPE values of 3.53%, 6.18%, and 7.71% were increased to 6.63%, 13.53%, and 16.14% at high sun and sensor zenith angles for CHL, CDOM, and TSS, respectively. Uncertainty analysis provided similar results, indicating that AMI TPW produced approximately 3-fold lower error rates in ocean-color products than obtained using TPW values from the National Centers for Environmental Prediction. These results imply that AMI TPW can improve the accuracy and ability of GOCI-II ocean-color products to capture diurnal variability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.