Abstract

Eleven different Aspergillus strains were evaluated for their ability to produce β-glucosidase using sugar cane bagasse as a sole carbon source under solid state fermentation (SSF). The most potent strains, A. niger NRC 7 (674.6 U/g ds) and A. oryzae NRRL 447 (83 U/g ds), were used in a mixed culture to enhance β-glucosidase production by co-culturing under SSF. In mixed culture, β-glucosidase of the two strains (814 U/g ds) was nearly 1.2- and 9.8-fold than that of monocultures of A. niger NRC 7A and A. oryzae NRRL 447, respectively. Optimization of the culture parameters, initial pH value, moisture content, inoculum size and ratios of the two strains. and incubation time exhibited a significant increase in β-glucosidase production (1,893 U/g ds) than before optimization. Single feeding with citrate-phosphate buffer, succinate buffer, casein. and soybean flour individually after the third day of the fermentation time and controlling the moisture content at 90 % (w/w) induced β-glucosidase production. Maximum enzyme production increased up to 2.1-fold compared to 2,188 U/g ds during normal batch culture. Among nitrogen sources, soybean flour gave the highest β-glucosidase (4,578 U/g ds). while urea reduced β-glucosidase production (1,693 U/g ds). However, the combination of buffers with soybean flour through two fed cycles resulted in a decrease of the enzyme than single fed with buffers or soybean flour alone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call