Abstract

Fungal extraction is a promising approach for reclaiming phosphorus (P) from sewage sludge ash (SSA). However, this approach faces notable technical and economic challenges, including an unknown P speciation evolution and the addition of expensive chemical organic carbon. In this study, the use of an organic-rich effluent produced in sludge dewatering as nutrient source is proposed to initiate the fungal extraction of SSA-borne P with Aspergillus niger. The changes in P speciation in the ash during fungal treatment was analyzed by combined sequential extraction, solid-state 31P nuclear magnetic resonance, and P X-ray absorption near edge spectroscopy. Results showed that after 5 days of fungal treatment using sludge-derived organics, 85 % of P was leached from SSA. Dominantly, this considerable release of P resulted from the dissolution of Ca3(PO4)2, AlPO4, FePO4, and Mg3(PO4)2 in the ash, and their individual contribution rates to P released accounted for 28.0 %, 24.3 %, 20.6 %, and 18.8 %, respectively. After removal of metal cations (e.g., Mg2+, Al3+, Fe3+, and heavy metals) by cation exchange resin (CER), a hydroxyapatite (HAP) product with a purity of > 85 % was harvested from the extract by precipitation with CaCl2. By contrast, without CER purification, a crude product of Ca/Mg-carbonates and phosphates mixture were obtained from this extract. A total of 73.2 wt% of P was ultimately recovered from SSA through integrated fungal extraction, CER purification, and HAP crystallization. These findings provide a mechanistic basis for the development of waste management strategies for improved P reclamation with minimal chemical organics consumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.