Abstract

Basic dosimetric studies are necessary to support the use of photobiomodulation therapy (PBMT), since the great variety of laser parameters that are reported in the literature have created an obstacle to identifying reproducible results. Thus, the present study evaluates the process of tissue repair after the photobiomodulation therapy, taking into consideration the dose, frequency and the mode of energy delivery used. For this, 6 mm diameter wounds were created on dorsal skin of Wistar rats, and the animals were divided in control and irradiated groups, where L1 and L4 (irradiated with 1 point of 10 J/cm2), L2 and L5 (5 points of 10 J/cm2), L3 and L6 (1 point of 50 J/cm2), respectively for one or multiple days of irradiations. A diode laser, λ 660 nm, 40 mW of power and 0.028 cm2 of spot area was used. Our data showed that the group receiving multiple treatments over the first week post wounding, applied at 10 J/cm2 at each of 5 points on and around the wound (group L5) presented the best improvement of wound closure, higher cytokeratin 10, lower macrophage infiltration, and greater tissue resistance to rupture. We conclude that PBMT improves the skin wound healing process, and the outcomes were directly related to the chosen laser parameters and irradiation mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call