Abstract

The use of the Fourier Polarimetry method has been demonstrated to extract the three characteristic parameters in integrated photoelasticity. In contrast to the phase-stepping method, it has been shown that the Fourier method is more accurate. However, the Fourier method isn't very efficient as it requires that a minimum of nine intensity images be collected during a whole revolution of a polarizer while the phase-stepping method only needs six intensity images. In this paper the Fourier transformation is used to derive the expression for determination of the characteristic parameters. Four Fourier coefficients are clearly identified to calculate the three characteristic parameters. It is found that the angular rotation ratio could be set arbitrarily. The angular rotation ratio is optimized to satisfy the requirements of efficiency and proper data accuracy, which results in data collection about three times faster than the methods suggested by previous researchers. When comparing their performance in terms of efficiency and accuracy, the simulated and experimental results show that these angular rotation ratios have the same accuracy but the optimized angular rotation ratio is significantly faster. The sensitivity to noise is also investigated and further improvement of accuracy is suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.