Abstract
The flux pinning properties of polycrystalline (Bi1.6Pb0.4Sr2Ca2Cu3O10+δ)1−x(Fe3O4)x, with x = 0.00, 0.01, 0.02, 0.03, 0.04, and 0.05 superconductors were investigated. The collective pinning theory was successfully used to describe the magnetization critical current density (Jc) of all samples. The value of Jc was enhanced by the proper doping contents of Fe3O4 nanoparticles. Possible origins for these achievements were attributed to the increases in both flux pinning force and activation energy. The appearance of the additional point-like pinning centers was confirmed via Dew–Hughes model fitting analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.