Abstract

Simulations of the gas fluidization of a cohesive powder were performed using the Stokesian Dynamics method and an agglomeration-deagglomeration model to investigate methods of improving the fluidizability of fine powders. Three techniques (a) high gas velocity (b) vibration-assisted fluidization and (c) tapered fluidizer were used in the simulations which provided detailed information on the bed microscopy such as the motion of 100 particles in a fluidizing vessel along with the formation and destruction of cohesive bonds during collisions. While all three techniques were found to effectively improve the fluidizability of a strongly cohesive powder, we suggest a combination of high velocity fluidization assisted by external vibration of the fluidized bed to minimize entrainment of particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call