Abstract

Flow Accelerated Corrosion (FAC) is very effective for nuclear power plant. This generalized corrosion can lead to the rupture of pipe and in some dramatic cases to casualties. During the last 20 years Electricité de France (EDF) has developed software called BRT-CICERO™ for the surveillance of the carbon steel piping system of its Nuclear Power Plants (NPPs). This software enables the operator to calculate the FAC wear rates by taking into account all the influencing parameters such as pipe isometrics, alloy content, chemical conditioning, design and operating parameters of the steam water circuit (temperature, pressure, etc…). This is a major tool to help operators organize their maintenance and inspections plan. The algorithms implemented in BRT-CICERO™ are based on tests conducted by EDF R&D, empirical results (national and international feedback), literature reviews and on permanent adjustments based on the operating feedback, via statistical studies. However, for some piping components, from the turbine’s hall, flow dynamics are not optimized and calculated FAC kinetics may be too conservative. EDF is committed for optimizing and increasing reliability of its maintenance programs to prevent the risk of pipe rupture due to FAC. As in consequence EDF is leading continuous improvement in parameters and calculation algorithms for BRT-CICERO™. Furthermore studies on the geometric characteristics of the pipes were conducted. In BRT-CICERO™ geometric effect of a pipe component (elbow reduction, tees …) is taken into account by considering a factor called “Geo” in the calculation to tune the thickness loss rate according the component type, its characteristics and specific effect on flow mass transfer. EDF implements finite element analysis software to compute the mass transfer coefficient k and so ascertain the “Geo” coefficient. These computed “Geo” coefficients are compared to those used in BRT-CICERO™. If necessary, current “Geo” coefficients used in BRT-CICERO™ will be adjusted and optimized to improve maintenance programs issued from the software. The presentation deals with the calculation method used for these studies and some results will be shown on tube and elbows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.