Abstract

In this article, dissipative particle dynamics with energy conservation eDPD is used for simulating hydrodynamic behavior and heat transfer of DPD particles in a two-dimensional channel with parallel planes. To this end, a Fortran programming code is developed and the results are presented as dimensionless velocity and temperature profiles on the cross section perpendicular to the flow direction inside the channel. For the indented geometry, thermal and dynamic boundary conditions have been considered. The dynamic boundary condition of solution domain in the flow’s direction is periodic, and for modeling the walls, freezing layers of DPD particles with Bounce-Back reflection has been used. For the thermal boundary condition, it is assumed that the wall temperature is constant and the temperature of each DPD particle in contact with the wall is the same as the wall temperature. In this article, for the first time, for modeling the walls four frozen layers with Bounce-Back reflection are used and the effect of particle exit on two and three-layers configurations is investigated. Furthermore, for the first time, modified velocity Verlet integration algorithm is improved by adding heat transfer equations. And considering λ = 0.65 in the algorithm; the indented geometry is well simulated. In order to validate the results, first, the effect of regular and random initial distribution is compared. Furthermore, the results of wall alignment are compared with those obtained from CFD approach. In this paper, in addition to studying the effect of wall alignment and initial particle arrangement, the influence of the size of cells for averaging and the time steps in the output results are investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call