Abstract
The structure of organic ligand scaffolds of copper complexes critically affects their electrocatalytic properties toward water oxidation, which is widely regarded as the bottleneck of overall water splitting. Herein, two novel mononuclear Cu complexes, [Cu(dmabpy)](ClO4)2 (1, dmabpy = 6,6'-bis(dimethylaminomethyl)-2,2'-bipyridine) and [Cu(mabpy)](ClO4)2 (2, mabpy = 6,6'-bis(methylaminomethyl)-2,2'-bipyridine), with four-coordinated distorted planar quadrilateral geometry were synthesized and explored as efficient catalysts for electrochemical oxygen evolution in phosphate buffer solution. Interestingly, complex 1 with a tertiary amine group catalyzes water oxidation with lower onset overpotential and better catalytic performance, while complex 2 containing a secondary amine fragment displays much lower catalytic activity under identical conditions. The water oxidation catalytic mechanism of the two complexes is proposed based on the electrochemical test results. Experimental methods indicate that phosphate coordinated on the Cu center of the two complexes inhibits their reaction with substrate water molecules, resulting in lower activity toward water oxidation. Electrochemical tests reveal that the structure of the coordinated nitrogen atom improves the catalytic performance of the Cu complexes by modulating the coordination of phosphate on the Cu center, indicating that a minor alteration of the coordinating nitrogen atom of the ligand has a detrimental effect on the catalytic performance of electrochemical WOCs based on transition metal complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.