Abstract
BaTiO3-Bi(Zn,Ti)O3 (BT-BZT) ceramics have been used as capacitors due to their large dielectric permittivity and excellent temperature stability and are good candidates for lead-free materials for electrocaloric and energy storage devices. However, BT-BZT ceramics often suffer from inferior properties and poor reproducibility due to heterogeneous compositional distribution after calcination and sintering. In this work, (1-x)BT-xBZT ceramics (x = 0~0.2) were fabricated with nano-sized BaTiO3 raw materials (nano-BT) by a solid-state reaction method to enhance the chemical homogeneity. The (1-x)BT-xBZT ceramics prepared from the nano-BT showed larger densities and more uniform microstructures at the lower calcination and sintering temperatures than the samples prepared from more frequently used micrometer-sized raw materials BaCO3, TiO2, Bi2O3, and ZnO. The (1-x)BT-xBZT ceramic prepared from the nano-BT displayed a phase transition from a tetragonal ferroelectric to a pseudo-cubic relaxor in a narrower composition range than the sample prepared from micro-sized raw materials. Larger adiabatic temperature changes due to the electro-caloric effect (ΔTECE) and recoverable energy storage density (Urec) were observed in the samples prepared from the nano-BT due to the higher breakdown electric fields, the larger densities, and uniform microstructures. The 0.95BT-0.05BZT sample showed the largest ΔTECE of 1.59 K at 80 °C under an electric field of 16 kV/mm. The 0.82BT-0.18BZT sample displayed a Urec of 1.45 J/cm2, which is much larger than the previously reported value of 0.81 J/cm2 in BT-BZT ceramics. The nano-BT starting material produced homogeneous BT-BZT ceramics with enhanced ECE and energy storage properties and is expected to manufacture other homogeneous solid solutions of BaTiO3 and Bi-based perovskite with high performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.