Abstract
Abstract The electrical conductivity of dual inclusion of 1-ethyl-3-methyl imidazolium bis(trifluorosulfonyl) imide ionic liquid and three allotropes of carbon based nanofillers (multiwalled carbon nanotube, graphene and graphite) in poly (ethyl methacrylate) films with thickness ranging from 100 to 250 μm has been investigated in the temperature range of 300–380 K. It is found that the electrical conductivity of film with 0.5 wt % multiwalled carbon nanotube has the highest ambient electrical conductivity of 4.9 × 10−6 Scm−1 which is five order of magnitude higher than pure poly (ethyl methacrylate) film. Moreover, the stability of the highest electrical conductivity is also found to be significantly improved for a longer period. From the investigated physicochemical properties, these improvements are likely can be explained by the aggregation of multiwalled carbon nanotubes, the increase in electronic transport and the reduction in glass transition temperature which likely effect its ionic mobility. Consequently, these enhancements may lead to a promising improvement of its electrical properties for a stable near room temperature application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.