Abstract

Abstract This paper describes new methods that improve the efficiency of a piezoelectric element attached to a beam based on mechanical impedance matching. Piezoelectric elements are often used to suppress bending vibration. They are also used as sensors or energy-harvesting sources. In such cases, the piezoelectric element is usually bonded onto the host structure by an adhesive bond. The efficiency of the piezoelectric element depends on the bonding location. When the efficiency is insufficient despite a good location, the size or number of piezoelectric elements is increased. However, the efficiency of the piezoelectric element is usually insufficient even if these methods are applied. In order to enhance the efficiency of the piezoelectric elements without using active methods, this paper proposes a mechanical impedance matching method that uses spacers or tuning for the size of the piezoelectric element. Because the attached piezoelectric element and host structure in this region behave as springs in parallel to the bending deformation, the stored strain energy in the piezoelectric element is maximized under the condition that their spring constants match. The proposed methods were theoretically investigated with consideration for the effects of the bonding layer, spacers, and host structure. The optimum conditions for the proposed methods were theoretically formulated, and the effectiveness of the proposed methods and theoretical analysis was verified through simulations and experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call