Abstract

Fexofenadine (FEX) has high solubility and low permeability (BCS, Class III). In this work, novel FEX loaded water in oil microemulsion (w/o) was designed to improve bioavailability and compared with Fexofen® syrup in in vitro and in vivo studies. In addition, pharmacokinetic parameters in permeability studies were estimated by using WinNonLin software program. w/o microemulsion system was optimized using a pseudoternary phase diagram, composed of span 80/lutrol F 68 (9.5:0.5 w/w), oleic acide, isopropyl alcohol and water as surfactant mixture; oil and cosurfactant was developed for oral drug delivery. w/o microemulsion systems were characterized by phase behavior, particle size, viscosity and solubilization capacity. In vitro studies were studied using Caco-2 cell monolayer. Pharmacokinetic parameters of w/o microemulsion were investigated in rabbits and compared to Fexofen® syrup. Fexofen® syrup and microemulsion were administered by oral gavage at 6 mg/kg of the same concentration. The experimental results indicated that microemulsion (HLB = 5.53) formed nanometer sized droplets (33.29 ± 1.76) and had good physical stability. This microemulsion increased the oral bioavailability of FEX which was highly water-soluble but fairly impermeable. The relative bioavailability of FEX microemulsion was about 376.76% compared with commercial syrup in rabbits. In vitro experiments were further employed for the enhanced effect of the microemulsion for FEX. These results suggest that novel w/o microemulsion plays an important role in enhancing oral bioavailability of low permeability drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.